УДК 621.671 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ САМОРЕГУЛИРУЕМОГО ТОРЦОВОГО УПЛОТНЕНИЯ

Ч. Кундера*, Д. Михальский*, А.В. Загорулько** *Texнологческий университет, г. Кельце, Польша **Сумский государственный университет, Украина

В статье приведена физическая модель саморегулируемого бесконтактного торцового уплотнения. Представлены экспериментальная установка, конструкция регулятора и результаты работы системы регулирования.

ВВЕДЕНИЕ

Уплотнение с регулируемыми параметрами, которое обычно называют саморегулируемым уплотнением, относительно новая идея. Впервые было предложено рассматривать механическое контактное торцовое уплотнение как объект регулирования в экспериментальных работах [1,2,3]. Исследования заключались в измерении температуры или величины протечек и регулировании нагрузки, действующей на уплотнительные кольца. В литературе [4] приведен обзор основных теоретических и экспериментальных результатов, полученных в этой области. Достаточно интересный эксперимент описан в литературе [5], в котором зазор контролировался электропневматическим преобразователем. В литературе [4] обсуждаются результаты исследований и оборудование, используемое для испытаний различных конструкций саморегулируемых торцовых уплотнений.

Экспериментальный анализ был проведен для модели бесконтактного торцового уплотнения с упруго установленным не вращающимся кольцом (рис. 1*a*). Известно, что в бесконтактном уплотнении требуется поддерживать постоянный независящий от времени зазор между уплотнительными кольцами. Для этого необходимо регулировать силы, действующие на упруго установленное кольцо. Внутреннюю силу, возникающую в зазоре уплотнения F_s (раскрывающая сила) и внешнюю нагружающую силу F_d (закрывающая сила) (рис. 1*б*).

Рисунок 1 - Схема торцового уплотнения с упруго установленным не вращающимся кольцом (a) и статическая характеристика уплотнения (б): 1,2 – уплотнительные кольца; 3 – обойма упруго установленного кольца; 4 – вторичное уплотнение; 5 – поводок, 6 – пружина; 7 – корпус; 8 – фиксатор; p₀ – давление уплотняемой воды; β₁ – угол конусности торцовой поверхности; ε₂ – перекос вращающегося кольца; ω - угловая скорость вращения вала

"Вісник СумДУ. Технічні науки", №1' 2007

Пока силы, действующие на упруго установленное кольцо, уравновешены, фактическая величина зазора равна заранее установленной величине h_o . Какие-либо изменения характеристик уплотняемой жидкости, частоты вращения вала или амплитуды вибраций приводят к нарушению этого равновесия.

Зазор в уплотнении может регулироваться одним из двух способов: изменением раскрывающей или закрывающей сил (рис. 1б). Сила, раскрывающая зазор, зависит от геометрии уплотнения, перепада давления, вязкости и скорости вращения вала. Метод, заключающийся в регулировании силы в зазоре, используется в бесконтактных торцовых уплотнениях, в которых на одной из поверхностей торцовых колец выполнены микроканавки различной формы, поэтому изменение в распределении давления приводит к изменению внутренней разгружающей силы. Другой метод контроля зазора заключается в закрывающей действующей регулировании силы, на иприго установленное кольцо, и он является более предпочтительным по сравнению с первым методом. Это связано с тем, что закрывающая сила менее чувствительна к изменению параметров уплотнительной системы [4].

Цель этой статьи – описание стенда для испытаний уплотнения с механизмом пневматического регулирования закрывающей силы, а также обсуждение наиболее интересных результатов, которые касаются работы системы регулирования.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОГО СТЕНДА

Исследования проводились на оригинальном экспериментальном стенде, в котором реализован метод контроля величины зазора в уплотнении. На фотографии (рис. 2) показаны измерительная аппаратура и экспериментальная установка. Экспериментальный стенд состоит из следующих систем и модулей: механической системы, в которую входит измерительная и регулирующая головка; привода и основания; модуля для поддержания требуемого давления жидкости в уплотнительной камере; модуля для создания нагрузки на упруго установленное кольцо; системы регулирования; измерительной системы, отвечающей за получение и обработку данных эксперимента.

Одно из уплотнительных колец 3 упруго установлено в корпусе камеры 4, другое установлено на валу 1 и вращается в месте с ним. Привод вала позволяет плавно регулировать частоту вращения, максимальная величина частоты вращения - 3000 об/мин. Уплотняемая жидкость подается в испытательную камеру специальной пневмосистемой с номинальной величиной давления равной 0,6 МПа.

В испытательной камере установлены измерительные датчики 12. В экспериментах нагружение упруго установленного кольца обеспечивалось пневматической системой. Зазор регулировался изменением нагружающей силы, действующей на упруго установленное кольцо при помощи системы регулирования. Рисунок 4 показывает блок-схему системы регулирования величины зазора в уплотнении.

Торцовое уплотнение исследовалось в испытательной камере. Схематически испытательная камера показана на рис.3.

Токовихревой датчик перемещения использовался для измерения величины зазора в уплотнении, т.е. для исследования динамического поведения упруго установленного кольца относительно корпуса. После ограничения напряжения сигнал с датчика зазора поступал на персональный компьютер через аналогоцифровой преобразователь (АЦП). Затем вычислялся зазор в уплотнении, который сравнивался с величиной требуемого зазора. Основываясь на разнице сигнала между измеренным и

Рисунок 2 - Установка с измерительной аппаратурой

Рисунок 3 - Схема испытательной камеры: 1 – вал; 2,3 – уплотнительные кольца; 4,5 – элементы камеры; 6 – подвод уплотняемой среды; 7 – отвод протечек; 8 – пружины; 9 – вторичные уплотнения; 10,11 – подшипниковый узел; 12 – бесконтактный индуктивный датчик; 13 – подвод воздуха

Рисунок 4 - Блок-схема системы регулирования величины зазора в уплотнении

"Вісник СумДУ. Технічні науки", №1' 2007

требуемым зазором в соответствии с алгоритмом регулирования, рассчитывался регулируемый сигнал, который затем передавался через цифроаналоговый преобразователь (ЦАП) на электропневматический преобразователь. Функцией электропневматического преобразователя является обеспечение давление воздуха (нагружающей силы) пропорционального сигналу в виде напряжения, полученного с ЦАП.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

На первой стадии исследования была получена статическая характеристика уплотнения. Давление воздуха в статорной камере, создающее нагрузку на упруго установленное кольцо, изменялось электропневматическим регулируемым клапаном. Давление воздуха, также как и величина зазора, измерялись при определенной величине давления уплотняемой среды.

Для определенной величины давления воздуха, т.е. силы давления, получена средняя величина установившегося зазора в период времени равный примерно 1 с. При испытаниях понижали величину давления воздуха до тех пор, пока не была достигнута некоторая потеря устойчивости в виде больших протечек и повышения амплитуды вибрации кольца. Это свидетельствовало о турбулентном режиме течения в торцовом зазоре. Величина зазора в этом случае была около 150 мкм. На рисунке 5 показаны статические характеристики, полученные для трех разных величин давления воды p_{w1} =0,218 МПа, p_{w2} =0,272 МПа, p_{w3} =0,343 МПа.

Рисунок 5 - Статические характеристики испытуемого уплотнения

Характеристики, приведенные на рис. 5, являются нелинейными и имеют форму петли гистерезиса. Это объясняется наличием значительных сил трения в системе, а также другими нелинейностями, связанными с пластическими свойствами эластомерного уплотнительного кольца и наличием пленки жидкости в зазоре торцового уплотнения. Из рисунка 5 видно, что повышение величины зазора приводит к снижению коэффициента жесткости системы. Кроме того, при повышении давления воды p_w , наблюдается некоторое изменение статических характеристик уплотнения. Это связано с тем, что точка статического равновесия кольца смещается, поэтому рабочая точка системы в целом также изменяется. На следующем этапе был выполнен контроль системы регулирования. Испытания были проведены со следующими рабочими характеристиками: давление уплотняемой воды $p_w = 0,2175$ МПа, угловая скорость вращения $\omega = 10$ Гц, угол конусности статора (0,5-1,5) мрад и расцентровка ротора 1,5-2,5 мрад.

Рисунок 6 – Величина зазора в уплотнении

Рисунок 6 показывает процесс регулирования силы давления для двух различных величин зазора: $H_1 = 0.05$ мм и $H_2 = 0.07$ мм. Из статических характеристик (рис. 5) видно, что эти значения зазора находятся в области малых коэффициентов жесткости пленки уплотняемой среды и при этом значительные силы трения действуют на вторичное уплотнение. Такие условия не совсем благоприятны для исследования процесса регулирования зазора. Это связано с тем, что даже незначительное изменение силы приводит к резкому повышению величины зазора. Тем не менее эти условия были выбраны для того, чтобы проверить возможности системы регулирования. Как видно из рисунка 6, величина зазора после некоторого переходного периода устанавливается и колеблется величины. Также видно. возле требуемой что перерегулирование, которое наблюдается в переходном периоде, меньше для меньшей величины зазора. Кроме того, в экспериментах было определено, что для меньших величин зазора значительно проще обеспечить регулирование.

ЗАКЛЮЧЕНИЕ

Регулирование зазора в уплотнении часто обсуждаемая проблема и пока, в большинстве случаев, изучается чисто теоретически. В работе представлена специальная испытательная установка, получены статические и динамические характеристики бесконтактного торцового уплотнения с системой регулирования. Получены экспериментальные данные по регулированию величины зазора в уплотнении. Авторы статьи надеются, что решение, описанное выше, со временем станет общепринятым в промышленной практике.

SUMMARY

The paper presents a physical model of a noncontacting face seal and an original test rig. The experimental setup, controller design, and results of the controlled system performance are presented.

"Вісник СумДУ. Технічні науки", №1' 2007

СПИСОК ЛИТЕРАТУРЫ

- Kundera Cz., Rudol F. Boundary state of a sliding ring seal // Exploitation Problems of Machines. Polish Academy of Sciences. Issue 1-2 (69-70). 1987. P.75-90. 1.
- Machines. Poins Academy of Sciences. Issue 1-2 (69-(0). 1987. P. 75-90.
 Salant R.F., et al. Development of an electronically controlled mechanical seal. Proc. BH Conf. on Fluid Sealing, Paper H-2, Cannes. France. 1987. P. 576-595.
 Heilala A.J., Kangasneimi A. Adjustment and control of a mechanical seal against dry running and severe wear. Proc. BHRA 11th Intl. Conf. on Fluid Sealing, Paper H-2, Cannes. France. 1987. P. 548-575.
 Kindan G. A. time allowed for the seal and activities allowed to Macademy Nu 15. Kindan
- 4. Kundera Cz. Active sealing of vibrating and rotating elements: Monograph No 15. Kielce University of Technology. - Kielce, 1999. - P. 115.
- Min Zou, Green I. Clearance Control of a Mechanical Face Seal // Tribology Transactions ASLE. Vol.42, No.3. 1999. P. 535-540.

Ч. Кундера, д-р техн. наук, профессор

Технологический университет, г. Кельце, Польша

Д. Михальский, магистр

Технологический университет, г. Кельце, Польша

А.В. Загорулько, канд. техн. наук

Сумский государственный университет, Украина

Поступила в редакцію 28 ноября 2006 г.