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Topic 1. The fundamentals of rotor dynamics 

 

A simple conservative single-mass model of rotor 

dynamics. Direct synchronous precession. A self-balancing 

phenomenon. Equation of a motion for a single-mass model of 

the unbalanced rotor. Considering the external friction. 

Kinematics of rotating rotor’s precessions. Equation of rotor 

dynamics considering the anisotropy of elastic forces. Loss of 

dynamic stability. Forced oscillations of a balanced horizontal 

rotor. Kinematics of a horizontal rotor. Equation of rotor 

dynamics considering the impact of a liquid layer. Influence of 

the circulating force. Determination of amplitude and phase 

frequency responses. Dynamic stability of a centrifugal pump’s 

rotor. 

 

Pr. tr. 1. Dynamic analysis of the conservative  

single-mass model 

 

1. The amplitude-frequency response for a single-mass model of 

rotor dynamics. 

2. Determination of the maximum deflection of a rotor at the 

operating frequency. 

3. Evaluation of the total dynamic response at the operating 

frequency. 

 

The initial data is presented in Table 1.1, where the 

following parameters are introduced: d – shaft’s diameter, m;  

L – shaft’s length, m; m0 – mass of the impeller, kg; n0 – 

operating speed, rpm; ρ – density, kg/m3; E – Young’s modulus, 

N/m2; cs – bearing stiffness, N/m. 
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Table 1.1 – Initial data for Pr. tr. 1 

 

Var. 
d,  

m 

L,  

m 

m0,  

kg 

n0,  

rpm 

ρ,  

kg/m3 

E,  

1011 

N/m2 

cs,  

108 

N/m 

1 0.015 0.6 10 1500 7800 2.00 1 

2 0.020 0.7 15 3000 7850 2.05 2 

3 0.025 0.8 20 4500 7800 2.10 3 

4 0.030 0.9 25 6000 7850 2.00 4 

5 0.035 1.0 30 7500 7800 2.05 5 

6 0.040 1.1 35 9000 7850 2.10 1 

7 0.045 1.2 10 1050 7800 2.00 2 

8 0.050 1.3 15 1500 7850 2.05 3 

9 0.015 1.4 20 3000 7800 2.10 4 

10 0.020 1.5 25 4500 7850 2.00 5 

11 0.025 0.6 30 6000 7800 2.05 1 

12 0.030 0.7 35 7500 7850 2.10 2 

13 0.035 0.8 10 9000 7800 2.00 3 

14 0.040 0.9 15 1050 7850 2.05 4 

15 0.045 1.0 20 1500 7800 2.10 5 

16 0.050 1.1 25 3000 7850 2.00 1 

17 0.015 1.2 30 4500 7800 2.05 2 

18 0.020 1.3 35 6000 7850 2.10 3 

19 0.025 1.4 10 7500 7800 2.00 4 

20 0.030 1.5 15 9000 7850 2.05 5 

 

The calculation technique is as follows: 

1) the amplitude-frequency response for a single-mass model of 

rotor dynamics: 

– shaft mass, kg: 

 𝑚𝑠 = 𝜌
𝜋𝑑2

4
𝐿; (1.1) 
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– the equivalent mass of the rotor, kg: 

 𝑚𝑒 = 𝑚0 +𝑚𝑠; (1.2) 

– the cross-sectional moment of inertia, m4: 

 𝐼 =
𝜋𝑑4

4
; (1.3) 

– bending stiffness of the simply-supported shaft, N/m: 

 𝑐𝑏 =
48𝐸𝐼

𝐿3
; (1.4) 

– equivalent stiffness of the system “rotor – bearings”, N/m: 

 𝑐𝑒 =
2𝑐𝑏𝑐𝑠

𝑐𝑏+2𝑐𝑠
; (1.5) 

– eigenfrequency, rad/s: 

 𝜔𝑐𝑟 = √
𝑐𝑒

𝑚𝑒
; (1.6) 

– critical speed, rpm: 

 𝑛𝑐𝑟 =
30

𝜋
𝜔𝑐𝑟; (1.7) 

– operating speed, rad/s: 

 𝜔0 =
𝜋𝑛𝑐𝑟

30
; (1.8) 

– amplitude-frequency response, m: 

 𝐴(𝜔) =
𝑚𝑒𝜔

2𝑒

|𝑐𝑒−𝑚𝑒𝜔2|
, (1.9) 
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where ω – rotational speed, rad/s; e – permissible eccentricity, 

m; 

2) determination of the maximum deflection of a rotor at the 

operating frequency: 

– amplitude at the operating speed, m: 

 𝐴0 =
𝑚𝑒𝜔0

2𝑒

|𝑐𝑒−𝑚𝑒𝜔0
2|
, (1.10) 

3) evaluation of the total dynamic response at the operating 

frequency: 

– the total dynamic reaction force, N: 

 𝑅0 = 𝑐𝑒𝐴0. (1.11) 

 

Pr. tr. 2. Dynamic analysis of a single-mass model considering 

external friction 

 

1. Amplitude and phase-frequency responses for a single-mass 

model. 

2. Determination of the maximum deflection of a rotor at the 

critical frequency. 

3. Evaluation of the total dynamic response at the critical 

frequency. 

 

The initial data is similar to Pr. tr. 1. However, damping 

is additionally considered (Table 1.2), where �̅� – dimensionless 

damping factor. 
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Table 1.2 – Additional data for Pr. tr. 2 

 

Var. 1 2 3 4 5 6 7 8 9 10 

�̅� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Var. 11 12 13 14 15 16 17 18 19 20 

�̅� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

The calculation technique is as follows: 

1) amplitude and phase-frequency responses for a single-mass 

model: 

– determination of eigenfrequency by formulas (1.1)–(1.6); 

– damping factor, N·s/m: 

 𝑏 = 𝑚𝑒𝜔𝑐𝑟�̅�; (1.12) 

– amplitude-frequency response, m: 

 𝐴(𝜔) =
𝑚𝑒𝜔

2𝑒

√(𝑐𝑒−𝑚𝑒𝜔2)2+(𝑏𝜔)2
; (1.13) 

– phase-frequency response, rad: 

 𝜑(𝜔) =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑔 (

𝑏𝜔

𝑐𝑒−𝑚𝑒𝜔2
) , 𝑖𝑓 𝜔 < 𝜔0;

𝜋

2
, 𝑖𝑓 𝜔 = 𝜔0;

𝜋 + 𝑎𝑟𝑐𝑡𝑔 (
𝑏𝜔

𝑐𝑒−𝑚𝑒𝜔2
) , 𝑖𝑓 𝜔 > 𝜔0;

 (1.14) 

2) determination of the maximum deflection of a rotor at the 

critical frequency, m: 

 𝐴𝑚𝑎𝑥 =
√𝑚𝑒𝑐𝑒

𝑏
𝑒; (1.15) 
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3) evaluation of the total dynamic response at the critical 

frequency, N: 

 𝑅𝑚𝑎𝑥 = 𝑐𝑒𝐴𝑚𝑎𝑥. (1.16) 

 

Pr. tr. 3. Dynamic analysis of a single-mass model for a double 

rigidity rotor 

 

1. Determination of the critical frequencies of the first kind. 

2. Detuning from the resonanse. 

3. The dynamic stability conditions for the rotor at the operating 

frequency. 

4. Determination of the critical frequency of the second kind. 

5. Relative and absolute trajectories of the mass center. 

 

The initial data is similar to Pr. tr. 1. However, the 

damping factor is additionally considered (Table 1.3), where  

δa – anisotropy factor; δcr – detuning from the resonance. 

 

Table 1.3 – Additional data for Pr. tr. 3 

 

Var. δa δcr Var. δa δcr 

1 0.05 0.25 11 0.25 0.30 

2 0.10 0.30 12 0.30 0.35 

3 0.15 0.35 13 0.05 0.40 

4 0.20 0.40 14 0.10 0.45 

5 0.25 0.45 15 0.15 0.50 

6 0.30 0.50 16 0.20 0.55 

7 0.05 0.55 17 0.25 0.60 

8 0.10 0.60 18 0.30 0.65 

9 0.15 0.65 19 0.05 0.25 

10 0.20 0.25 20 0.10 0.30 
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The calculation technique is as follows: 

1) determination of the critical frequencies of the first kind: 

– calculation of equivalent mass by formulas (1.1)–(1.2); 

– calculation of the cross-sectional moment of inertia by formula 

(1.3); 

– determination of the bending double-rigidity stiffness, N/m: 

 𝑐𝑏𝑦 =
48𝐸𝐼

𝐿3
; 𝑐𝑏𝑥 = (1 − 𝛿𝑎)𝑐𝑏𝑦; (1.17) 

– determination of the equivalent double-rigidity stiffness, N/m: 

 𝑐𝑒𝑥 =
2𝑐𝑏𝑥𝑐𝑠

𝑐𝑏𝑥+2𝑐𝑠
;  𝑐𝑒𝑦 =

2𝑐𝑏𝑦𝑐𝑠

𝑐𝑏𝑦+2𝑐𝑠
; (1.18) 

– evaluation of the critical frequencies of the 1st kind, rad/s: 

 𝑝1 = √
𝑐𝑒𝑥

𝑚𝑒
;  𝑝2 = √

𝑐𝑒𝑦

𝑚𝑒
; (1.19) 

2) detuning from the resonance: 

– operating frequency, rad/s: 

 𝜔0 = (1 − 𝛿𝑐𝑟)𝑝2; (1.20) 

3) the dynamic stability conditions for the rotor at the operating 

frequency: 

– calculation of following imaginary parameters, rad/s: 

 

𝑝𝐼 =
√−(𝑝1

2+𝑝2
2+2𝜔2)+√(𝑝1

2−𝑝2
2)
2
+8𝜔2(𝑝1

2+𝑝2
2)

2
;

𝑝𝐼𝐼 =
√−(𝑝1

2+𝑝2
2+2𝜔2)−√(𝑝1

2−𝑝2
2)
2
+8𝜔2(𝑝1

2+𝑝2
2)

2
;

 (1.21) 
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4) determination of the critical frequency of the second kind, 

rad/s: 

 𝜔𝑐𝑟2 =
𝑝1𝑝2

√2(𝑝1
2+𝑝2

2)
; (1.22) 

5) relative and absolute trajectories of the mass center: 

– semiaxes of the elliptical trajectory, m: 

 (
𝐴
𝐵
) = − [

𝑝1
2 − 2𝜔0

2 2𝜔0
2

2𝜔0
2 𝑝2

2 − 2𝜔0
2] (

1
1
) 𝑔, (1.23) 

where g = 9.81 m/s2 – acceleration of gravity; 

– geometrical components of the trajectory, m: 

 𝛥 =
𝐴+𝐵

2
; 𝑟 =

𝐵−𝐴

2
; (1.24) 

– coordinates of the trajectory, m: 

 {
𝑥(𝑡) = 𝑟𝑠𝑖𝑛(2𝜔0𝑡);

𝑦(𝑡) = 𝛥 − 𝑟𝑐𝑜𝑠(2𝜔0𝑡).
 (1.25) 

where t – time, s. 

 

Pr. tr. 4. Dynamics of a single-mass model for a centrifugal 

pump rotor 

 

1. Determination of the critical frequency. 

2. Amplitude and phase-frequency characteristics. 

3. The dynamic stability of the centrifugal pump rotor. 

 

The initial data is similar to Pr. tr. 1, 2. However, external 

damping is additionally considered (Table 1.4), where Δ�̅� – 

dimensionless external damping factor, N·s/m. 



13 
 

Table 1.4 – Additional data for Pr. tr. 4 

 

Var. 1 2 3 4 5 6 7 8 9 10 

Δ�̅� 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

Var. 11 12 13 14 15 16 17 18 19 20 

Δ�̅� 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

The calculation technique is as follows: 

1) determination of the critical frequency: 

– determination of eigenfrequency by formulas (1.1)–(1.6); 

2) amplitude and phase-frequency characteristics: 

– determination of damping factor by formula (1.12); 

– external damping factor, N·s/m: 

 Δ𝑏 = 𝑚𝑒𝜔𝑐𝑟Δ�̅�; (1.26) 

– coefficient of the circulating force, N/m: 

 𝑞(𝜔) =
1

2
𝑏𝜔; (1.27) 

– amplitude-frequency response, m: 

 𝐴(𝜔) =
𝑚𝑒𝜔

2𝑒

√(𝑐𝑒−𝑚𝑒𝜔2)2+[(𝑏+Δ𝑏)𝜔−𝑞(𝜔)]2
; (1.28) 

– phase-frequency response, rad: 

 𝜑(𝜔) =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑔 [

(𝑏+Δ𝑏)𝜔−𝑞(𝜔)

𝑐𝑒−𝑚𝑒𝜔2
] , 𝑖𝑓 𝜔 < 𝜔0;

𝜋

2
, 𝑖𝑓 𝜔 = 𝜔0;

𝜋 + 𝑎𝑟𝑐𝑡𝑔 [
(𝑏+Δ𝑏)𝜔−𝑞(𝜔)

𝑐𝑒−𝑚𝑒𝜔2
] , 𝑖𝑓 𝜔 > 𝜔0;

 (1.29) 
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3) the dynamic stability of the centrifugal pump rotor: 

– calculation of the operating speed by formula (1.8); 

– maximum operating speed of the stability loss, rad/s: 

 𝜔𝑠𝑙 = 2(1 +
Δ𝑏

𝑏
)𝜔𝑐𝑟 . (1.30) 

 

Topic 2. Study of rotor dynamics by discrete models of 

oscillations 

 

The primary dependencies. Self-oscillation of a rotor 

without contact interaction with the stator. Self-oscillating 

precession of a rotor under contact with the stator. A 

mathematical model of self-oscillations for a floating ring 

considering dry friction. Stability and self-oscillations of a 

single-mass model considering anisotropy of elastic forces. 

Influence of internal viscous friction on dynamics of a horizontal 

rotor. Basic approaches to creating discrete models of rotor 

dynamics. The traditional discrete multi-mass model. Ways to 

consider the gyroscopic moment of inertia in rotor dynamics. 

Influence of the gyroscopic moment of inertia on rotor’s critical 

frequencies. Shape functions of a 2D beam-type finite element. 

Lagrange equations of the 2nd kind for transverse oscillations of 

a beam element. Matrix equation of rotor dynamics. Free and 

forced oscillations of the rotor’s finite element model. 
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Pr. tr. 5. Self-oscillations of the centrifugal pump rotor 

 

1. Hydrodynamic characteristics of gap seals. 

2. Determination of the limiting frequency of the rotor’s self-

oscillations without contact with the stator. 

3. Self-oscillations of the rotor under contact with the stator. 

4. The dependence of the self-oscillations amplitude on the rotor 

speed. 

The initial data is similar to Pr. tr. 1, 2, 4. However, the 

following additional parameters are introduced (Table 2.1): h0 – 

the radial gap in the throttle, m; c0 – initial hydrodynamic 

stiffness of the throttling gap, N/m; α – stiffness factor; cc – 

contact stiffness between the rotor and the stator, N/m; f – 

friction coefficient. 

 

Table 2.1 – Additional data for Pr. tr. 5 

 

Var. 
h0,  

10–3 m 

c0,  

106 

N/m 

α 

cc,  

1011 

N/m 

f 

1 0.10 1 0.1 1 0.05 

2 0.12 2 0.2 2 0.10 

3 0.14 3 0.3 3 0.15 

4 0.16 4 0.4 4 0.20 

5 0.18 5 0.5 5 0.25 

6 0.20 6 0.1 6 0.30 

7 0.25 7 0.2 1 0.05 

8 0.30 8 0.3 2 0.10 

9 0.10 9 0.4 3 0.15 

10 0.12 1 0.5 4 0.20 

11 0.14 2 0.1 5 0.25 

12 0.16 3 0.2 6 0.30 

13 0.18 4 0.3 1 0.05 
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Var. 
h0,  

10–3 m 

c0,  

106 

N/m 

α 

cc,  

1011 

N/m 

f 

14 0.20 5 0.4 2 0.10 

15 0.25 6 0.5 3 0.15 

16 0.30 7 0.1 4 0.20 

17 0.10 8 0.2 5 0.25 

18 0.12 9 0.3 6 0.30 

19 0.14 1 0.4 1 0.05 

20 0.16 2 0.5 2 0.10 

 

The calculation technique is as follows: 

1) hydrodynamic characteristics of gap seals: 

– determination of eigenfrequency by formulas (1.1)–(1.6); 

– hydrodynamic stiffness of the throttling gap, N/m: 

 𝑐(𝑟) = 𝑐0 (1 +
3

4
𝛼2

𝑟2

ℎ0
2), (2.1) 

where r – radial displacement, m; 

– maximum stiffness of the throttling gap, N/m: 

 𝑐𝑚𝑎𝑥 = 𝑐0 (1 +
3

4
𝛼2) ; (2.2) 

– initial damping factor, N·s/m: 

 𝑏0 = 𝑚𝑒𝜔𝑐𝑟�̅�; (2.3) 

– damping factor of the throttling gap, N·s/m: 

 𝑏(𝑟) = 𝑏0 (1 +
3

2

𝑟2

ℎ0
2) ; (2.4) 

2) determination of the limiting frequency of the rotor’s self-

oscillations without contact with the stator: 
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– critical frequency of the rotor, rad/s: 

 𝜔𝑐𝑟 = √
𝑐𝑒+𝑐0

𝑚𝑒
; (2.5) 

– partial frequency of the sliding bearing, rad/s: 

 𝜔𝑠𝑏 = √
𝑐0

𝑚𝑒
; (2.6) 

– precession frequency, rad/s: 

 𝛺 = 0.5𝜔𝑐𝑟; (2.7) 

– limiting frequency range, rad/s: 

 𝜔𝑚𝑖𝑛 = 2𝜔𝑐𝑟;  𝜔𝑚𝑎𝑥 = 2𝜔𝑐𝑟√1 +
3

4
𝛼 (

𝜔𝑠𝑏

𝜔𝑐𝑟
)
2

; (2.8) 

3) self-oscillations of the rotor under contact with the stator: 

– critical frequency of the rotor under contact with the stator, 

rad/s: 

 𝜔𝑐𝑟 = √
𝑐𝑒+𝑐𝑚𝑎𝑥

𝑚𝑒
; (2.9) 

– partial frequency of the contact pair, rad/s: 

 𝜔𝑐 = √
𝑐𝑐

𝑚𝑒
; (2.10) 

– the variation of the dimensionless amplitude: 

 𝛿𝑎(𝜔) =
𝜔2−4𝜔𝑚𝑎𝑥

2

4𝜔𝑐
2(1+𝑓

𝑚𝑒
𝑏
𝜔)
; (2.11) 
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4) the dependence of the self-oscillations amplitude on the rotor 

speed: 

– amplitude before contact with the stator, m: 

 𝐴1(𝜔) =
2ℎ0

𝛼√3

𝜔𝑐𝑟

𝜔𝑠𝑏
√

𝜔2

4𝜔𝑐𝑟
2 − 1; (2.12) 

– amplitude under contact with the stator, m: 

 𝐴1(𝜔) = ℎ0[1 + 𝛿𝑎(𝜔)]. (2.13) 

 

Pr. tr. 6. Dynamic stability of the floating seal ring 

 

1. The dynamics of the horizontal rotor under internal viscous 

friction. 

2. Characteristics of self-oscillating precession of a floating ring 

considering dry friction. 

3. The stability of a single-mass model considering the 

anisotropy of elastic forces. 

4. Characteristics of self-oscillating precession of the rotor 

considering dry friction. 

 

The initial data is similar to Pr. tr. 1–5. However, the 

following additional parameters are introduced (Table 2.2): �̅�𝑓 – 

internal viscous friction ratio, N·s/m; mr – mass of the floating 

ring, kg; Fn – Nominal clamping force of the floating ring, N. 
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Table 2.2 – Additional data for Pr. tr. 6 

 

Var. 1 2 3 4 5 6 7 8 9 10 

mr, kg 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 

Fn,  

103 N 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 

�̅�𝑓 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 

Var. 11 12 13 14 15 16 17 18 19 20 

mr, kg 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 

Fn,  

103 N 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 

�̅�𝑓 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

 

The calculation technique is as follows: 

1) the dynamics of the horizontal rotor under internal viscous 

friction: 

– determination of eigenfrequency by formulas (1.1)–(1.6); 

– determination of damping factor by formula (1.12); 

– calculation of internal damping factor, N·s/m: 

 𝑏𝑓 = 𝑚𝑒𝜔𝑐𝑟�̅�𝑓; (1.14) 

– damping coefficient, s–1: 

 𝑘 =
𝑏

𝑚𝑒
; (2.15) 

– internal damping coefficient, s–1: 

 𝛿 =
𝑏𝑓

𝑚𝑒
; (2.16) 

– amplitude of the static displacement, m: 
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 𝐴𝑠(𝜔) =
𝑔

√𝜔𝑐𝑟
4 +𝜔2𝛿2

; (2.17) 

– phase shift of the static displacement, rad: 

 𝜑𝑠(𝜔) = 𝑎𝑟𝑐𝑡𝑔 (
𝜔𝛿

𝜔𝑐𝑟
2 ) ; (2.18) 

– amplitude-frequency response, m: 

 𝐴𝑠(𝜔) =
𝜔2𝑒

√(𝜔𝑐𝑟
2 −𝜔2)

2
+𝑘2𝜔2

; (2.19) 

– phase-frequency response, rad: 

 𝜑(𝜔) =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑔 (

𝑘𝜔

𝜔𝑐𝑟
2 −𝜔2

) , 𝑖𝑓 𝜔 < 𝜔0;

𝜋

2
, 𝑖𝑓 𝜔 = 𝜔0;

𝜋 + 𝑎𝑟𝑐𝑡𝑔 (
𝑘𝜔

𝜔𝑐𝑟
2 −𝜔2

) , 𝑖𝑓 𝜔 > 𝜔0;

 (2.20) 

2) characteristics of self-oscillating precession of a floating ring 

considering dry friction: 

– friction force, N: 

 𝐹𝑓 = 𝑓𝐹𝑛; (2.21) 

– partial frequency of the floating ring, rad/s: 

 𝜔𝑟 = √
𝑐0

𝑚𝑟
; (2.22) 

– precession frequency, rad/s: 
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 𝛺(𝜔) = 0.5𝜔 −
𝐹𝑓

𝑏0ℎ0𝑎(𝜔)
, (2.23) 

where a(ω) – the real root of the following equation: 

       
3

4
𝛼2𝜔0

2𝑎4 −
1

4
𝜔2𝑎2 + (𝜔𝑟

2 +
𝐹𝑟

𝑏0ℎ0
𝜔)𝑎 −

𝐹𝑟
2  

𝑏0
2ℎ0

= 0; (2.24) 

3) the stability of a single-mass model considering the 

anisotropy of elastic forces: 

– coefficient of the circulating force at operating speed, N/m: 

 𝑞0 =
1

2
𝑏0𝜔0; (2.25) 

– stiffness anisotropy, N/m: 

 Δ𝑐 = 𝛿𝑎𝑐𝑒; (2.26) 

– maximum stiffness anisotropy, N/m: 

 Δ𝑐𝑚𝑎𝑥 = √𝑐0
2 + 𝑞0

2; (2.27) 

– determination of signs of the reals parts of all the complex 

roots for the following characteristic equation: 

 
𝑚𝑟𝑝

4 + 2𝑏0𝑚𝑟𝑝
3 + (𝑏0

2 + 2𝑐0𝑚𝑟)𝑝
2 +

+2𝑏0𝑐0𝑝 + (𝑐0
2 + 𝑞0

2 − Δ𝑐) = 0,
 (2.28) 

where p – operator; 

4) characteristics of self-oscillating precession of the rotor 

considering dry friction: 

– minimum frequency, rad/s: 

 𝜔𝑚𝑖𝑛 = 2
Δ𝑐

𝑏0
; (2.29) 
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– auxiliary function as a semiaxes ratio for the elliptical 

trajectory for the phase shift of 
𝜋

4
 rad: 

 𝜓(𝜔) = √
𝜔−𝜔𝑚𝑖𝑛 

𝜔+𝜔𝑚𝑖𝑛
; (2.30) 

– precession frequency, rad/s: 

 𝛺(𝜔) = 0.5𝜔
2𝜓(𝜔)

1+𝜓2(𝜔)
. (2.31) 

 

Pr. tr. 7. Dynamic analysis of a discrete-mass model 

considering the gyroscopic moment of inertia 

 

1. Determination of the gyroscopic moment of the disk. 

2. Determination of eigenfrequencies. 

3. Clarification of eigenfrequencies considering the gyroscopic 

moment of inertia. 

 

The initial data is similar to Pr. 1. However, the width of 

the disk is additionally considered: B = βL, where β – 

dimensionless ratio (Table 2.3). 

 

Table 2.3 – Additional data for Pr. tr. 7 

 

Var. 1 2 3 4 5 

β 0.005 0.010 0.015 0.020 0.025 

Var. 6 7 8 9 10 

β 0.030 0.035 0.040 0.005 0.010 

Var. 11 12 13 14 15 

β 0.015 0.020 0.025 0.030 0.035 

Var. 16 17 18 19 20 

β 0.040 0.005 0.010 0.015 0.020 
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The calculation technique is as follows: 

1) determination of the gyroscopic moment of the disk: 

– diameter of the disk, m: 

 𝐷 = 2√
𝑚0

𝜋𝜌𝐵
; (2.32) 

– the gyroscopic moment of the disk, kg·m2: 

 𝐼𝑑 =
𝑚0𝐷

2

16
−
𝑚0𝐵

2

12
; (2.33) 

2) determination of eigenfrequencies: 

– calculation of the cross-sectional moment of inertia formula 

(1.3); 

– bending stiffness of the cantilever shaft, N/m: 

 𝑐 =
3𝐸𝐼

𝐿3
; (2.34) 

– eigenfrequency of the simplified single-mass model, rad/s: 

 𝜔𝑐𝑟 = √
𝑐

𝑚0
; (2.35) 

– calculation of the shaft mass by formula (1.1); 

– inertia matrix: 

 𝑀 = [

13

35
𝑚𝑠 +𝑚0 −

11

210
𝑚𝑠𝐿

−
11

210
𝑚𝑠𝐿

1

105
𝑚𝑠𝐿

2
] ; (2.36) 

– stiffness matrix: 
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 𝐶 = [
4𝑐 −2𝑐𝐿

−2𝑐𝐿
4

3
𝑐𝐿2 ] ; (2.37) 

– the first two eigenfrequencies ω1, ω2, rad/s, are determined 

from the following characteristic equation: 

 𝑑𝑒𝑡(𝐶 − 𝜔2𝑀) = 0; (2.38) 

3) clarification of eigenfrequencies considering the gyroscopic 

moment of inertia: 

– the compliance coefficients: 

 𝛿11 =
1

𝑐
; 𝛿12 = 𝛿21 =

𝐿2

2𝐸𝐼
; 𝛿22 =

𝐿

𝐸𝐼
; (2.39) 

– according to the traditional model, the first two 

eigenfrequencies ω1, ω2, rad/s, are determined from the 

following characteristic equation: 

 𝑑𝑒𝑡 [
𝑚0𝛿11𝜔

2 − 1 𝐼𝑑𝛿12𝜔
2

𝐼𝑑𝛿21𝜔
2 𝐼𝑑𝛿22𝜔

2 − 1
] = 0; (2.40) 

– according to the finite element model, the first two 

eigenfrequencies ω1, ω2, rad/s, are determined from the 

characteristic equation (2.38), where the inertia matrix is 

clarified as follows: 

 𝑀 = [

13

35
𝑚𝑠 +𝑚0 −

11

210
𝑚𝑠𝐿

−
11

210
𝑚𝑠𝐿

1

105
𝑚𝑠𝐿

2 + 𝐼𝑑
] ; (2.41) 
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Pr. tr. 8, 9. Application of the finite element method to study 

free and forced oscillations of rotor systems. Analysis of the 

finite element models of free and forced rotor oscillations using 

computer algebra systems 

 

1. Determination of local matrices of inertia and stiffness. 

2. Determination of global matrices of inertia and stiffness. 

3. Evaluation of eigenfrequencies of free oscillations. 

4. Comparison of the first eigenfrequency with the result for a 

single-mass model. 

5. Mode shapes of free oscillations. 

6. Amplitude and phase-frequency responses. 

7. Shapes of forced oscillations. 

 

The initial data is similar to Pr. tr. 1, 2, 4. The calculation 

technique is as follows: 

1) determination of local matrices of inertia and stiffness: 

– calculation of the finite element length for the system of two 

finite elements, m: 

 𝐿𝑒 =
1

2
𝐿; (2.42) 

– calculation of shaft mass by formula (1.1); 

– calculation of the finite element mass for the system of two 

finite elements, kg: 

 𝑚𝑒 =
1

2
𝑚𝑠; (2.43) 

– determination of the cross-sectional moment of inertia by 

formula (1.3); 

– local matrix of inertia for each finite element: 



26 
 

 𝑀 =

[
 
 
 
 
 
 

13𝑚𝑒

35

11𝑚𝑒𝐿𝑒

210

9𝑚𝑒

70

11𝑚𝑒𝐿𝑒

210

𝑚𝑒𝐿𝑒
2

105

13𝑚𝑒𝐿𝑒

420
9𝑚𝑒

70

13𝑚𝑒𝐿𝑒

420

13𝑚𝑒

35

−
13𝑚𝑒𝐿𝑒

420
−
𝑚𝑒𝐿𝑒

2

140
−
11𝑚𝑒𝐿𝑒

210

−
13𝑚𝑒𝐿𝑒

420

−
𝑚𝑒𝐿𝑒

2

140

−
11𝑚𝑒𝐿𝑒

210

𝑚𝑒𝐿𝑒
2

105 ]
 
 
 
 
 
 

; (2.44) 

– local matrix of stiffness for each finite element: 

 𝐶 =

[
 
 
 
 
 
 
12𝐸𝐼

𝐿𝑒
3

6𝐸𝐼

𝐿𝑒
2 −

12𝐸𝐼

𝐿𝑒
3

6𝐸𝐼

𝐿𝑒
2

4𝐸𝐼

𝐿𝑒
−
6𝐸𝐼

𝐿𝑒
2

−
12𝐸𝐼

𝐿𝑒
3 −

6𝐸𝐼

𝐿𝑒
2

12𝐸𝐼

𝐿𝑒
3

6𝐸𝐼

𝐿𝑒
2

2𝐸𝐼

𝐿𝑒
−
6𝐸𝐼

𝐿𝑒
2

6𝐸𝐼

𝐿𝑒
2

2𝐸𝐼

𝐿𝑒

−
6𝐸𝐼

𝐿𝑒
2

4𝐸𝐼

𝐿𝑒 ]
 
 
 
 
 
 

; (2.45) 

2) determination of global matrices of inertia and stiffness: 

 𝑀𝑔 = [

𝑀1,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑀4,4

] ;  𝐶𝑔 = [

𝐶1,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐶4,4

] ; (2.46) 

3) evaluation of eigenfrequencies of free oscillations ω1, ω2, and 

ω3, rad/s, is realized by solving the following characteristic 

equation: 

 𝑑𝑒𝑡(𝐶𝑔 − 𝜔
2𝑀𝑔) = 0; (2.47) 

4) comparison of the first eigenfrequency with the result for a 

single-mass model: 

– calculation of the equivalent mass of the rotor by formula 

(1.2); 
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– calculation of the bending stiffness of the simply-supported 

shaft by formula (1.4); 

– determination of the equivalent stiffness of the system “rotor – 

bearings” by formula (1.5); 

– evaluation of the eigenfrequency by formula (1.6); 

5) mode shapes of free oscillations are determined using the 

following matrices: 

 𝐷1 = 𝐶𝑔 −𝜔1
2𝑀𝑔;  𝐷2 = 𝐶𝑔 − 𝜔2

2𝑀𝑔;  𝐷3 = 𝐶𝑔 − 𝜔3
2𝑀𝑔; (2.48) 

6) amplitude and phase-frequency responses: 

– determination of damping factor by formula (1.12); 

– determination of external damping factor by formula (1.26); 

– local matrix of damping: 

 𝐶 = [

Δ𝑏/2 0 0
0 0 0
0 0 Δ𝑏/2
0 0 0

0
0
0
0

] ; (2.49) 

– global matrix of damping: 

 𝐵𝑔 = [

Δ𝑏

2
⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0

] ; (2.50) 

– global column-vector of imbalances: 

 𝐷𝑔 =

{
 
 

 
 
0
0
𝑚0𝑒
0
0
0 }
 
 

 
 

; (2.51) 
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– global column-vector of complex displacements: 

 𝑌(𝜔) = (𝐶𝑔 + 𝑗𝜔𝐵 − 𝜔
2𝑀)

−1
𝐷𝑔𝜔

2, (2.52) 

where j – imaginary unit (j2 = –1); 

– amplitude-frequency response: 

 𝐴(𝜔) = |𝑌0(𝜔)3|; (2.53) 

– phase-frequency response: 

 𝐴(𝜔) = 𝑎𝑟𝑔[𝑌(𝜔)3] ; (2.54) 

7) shapes of forced oscillations: 

 𝑌0(𝜔) = {

|𝑌0(𝜔)1|;
|𝑌0(𝜔)3|;
|𝑌0(𝜔)5|.

 (2.55) 

 

Topic 3. Fundamentals of balancing rotors for centrifugal 

machines 

 

Conditions of rotor’s dynamic equilibrium. Types of 

unbalances. Equivalent systems of imbalances. The concept of a 

rigid rotor. Quality criteria in rotor balancing. Static balancing 

of a rotor. Dynamic balancing of a rotor. The phenomenon of 

unbalance for a rotor balanced in two correction planes at low 

frequency. The decomposition of a synchronous precession for 

an unbalanced rotor by mode shapes of free oscillations. Rotor 

balancing by mode shapes. The Den Hartog’s approach in rotor 

balancing. 
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Pr. tr. 10. Static balancing of a disk 

 

1. Calculation of trial imbalance. 

2. Evaluation of unbalanced mass. 

3. The quality of the balancing procedure. 

 

The initial data is similar to Pr. tr. 1, 7. However, the 

following additional parameters are introduced (Table 3.1): φ1 – 

disk rotation angle, °. 

 

Table 3.1 – Additional data for Pr. tr. 10 

 

Var. 1 2 3 4 5 6 7 8 9 10 

φ1, ° 15 20 25 30 35 40 45 50 55 15 

Var. 11 12 13 14 15 16 17 18 19 20 

φ1, ° 20 25 30 35 40 45 50 55 15 20 

 

The calculation technique is as follows: 

1) calculation of trial imbalance: 

– diameter of the disk, m: 

 𝐷 = √
4𝑚0

𝜋𝜌𝛽

3
; (3.1) 

– balancing speed, rad/s: 

 𝜔𝑏 =
𝜋𝑛0

30
; (3.2) 

– balancing radius, m: 

 𝑟𝑏 =
𝐷

2
; (3.3) 

– trial mass, kg: 
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 𝑚𝑡 = 0.02
𝑚0𝑔

𝜔𝑏
2𝑟𝑏
; (3.4) 

2) evaluation of unbalanced mass, kg: 

 𝑚𝑏 =
𝑚𝑡

𝑡𝑔(𝜑1)
; (3.5) 

3) the quality of the balancing procedure, %: 

 𝛿𝑏 = |1 −
𝑚𝑡

𝑚𝑏 𝑠𝑖𝑛(𝜑1)
| · 100. (3.6) 

 

Pr. tr. 11. Dynamic balancing of the rotor in two  

correction planes 

 

1. Calculation of trial imbalance. 

2. Evaluation of the system of equivalent imbalances. 

3. Determination of residual imbalance. 

4. Calculation of the amplitude of forced oscillations. 

5. Evaluation of dynamic load on bearing supports. 

 

The initial data is similar to Pr. tr. 1, 7, 10. However, the 

following additional parameters are introduced (Table 3.2): A10, 

A20 – amplitudes of initial displacements, m; φ10, φ20 – phases of 

initial displacements, °; A11, A21 – amplitudes of initial 

displacements after 1st start, m; φ11, φ21 – phases of initial 

displacements after 1st start, °; A12, A22 – amplitudes of initial 

displacements after 2nd start, m; φ12, φ22 – phases of initial 

displacements after 2nd start, °. 
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Table 3.2 – Initial data for Pr. tr. 11 

Var. 1–4 5–8 9–12 13–16 17–20 

A10, 10–3 m 140 145 150 155 160 

φ10, ° 20 25 30 35 40 

A20, 10–3 m 150 155 160 165 170 

φ20, ° 5 10 15 20 25 

A11, 10–3 m 138 143 148 153 158 

φ11, ° 25 30 35 40 45 

A21, 10–3 m 147 152 157 162 167 

φ21, ° 0 5 10 25 30 

A12, 10–3 m 143 148 153 158 163 

φ12, ° 15 20 25 30 35 

A22, 10–3 m 145 150 155 160 165 

φ22, ° 10 15 20 25 30 

 

The calculation technique is as follows: 

1) calculation of trial imbalance: 

– determination of trial mass by formulas (3.1)–(3.4); 

– trial imbalance, kg·m: 

 𝐷𝑡 = 𝑚𝑡𝑟𝑏; (3.7) 

2) evaluation of the system of equivalent imbalances: 

– initial complex amplitudes: 

 𝑌10 = 𝐴10𝑒
𝜋𝜑10
180

𝑗;  𝑌20 = 𝐴20𝑒
𝜋𝜑20
180

𝑗; (3.8) 

– complex amplitudes after 1st start: 

 𝑌11 = 𝐴11𝑒
𝜋𝜑11
180

𝑗;  𝑌21 = 𝐴21𝑒
𝜋𝜑21
180

𝑗; (3.9) 

– complex amplitudes after 2nd start: 



32 
 

 𝑌12 = 𝐴12𝑒
𝜋𝜑12
180

𝑗;  𝑌22 = 𝐴22𝑒
𝜋𝜑22
180

𝑗; (3.10) 

– elements of the matrix of complex compliances, m/(kg·m): 

 
𝑊11 =

𝑌11−𝑌10

𝐷𝑡
;  𝑊12 =

𝑌12−𝑌10

𝐷𝑡
;

𝑊21 =
𝑌21−𝑌20

𝐷𝑡
;  𝑊22 =

𝑌22−𝑌20

𝐷𝑡
;
 (3.11) 

– evaluation of complex imbalances, kg·m: 

 {
𝐷1
𝐷2
} = [

𝑊11 𝑊12

𝑊21 𝑊22
]
−1

{
𝑌10
𝑌20
} ; (3.12) 

– correcting imbalances: 

 𝐷𝑏1 = −𝐷1; 𝐷𝑏2 = −𝐷2; (3.13) 

– magnitudes of the correcting imbalances, kg·m: 

 
|𝐷𝑏1|  = √𝑅𝑒2(𝐷1) + 𝐼𝑚2(𝐷1);

|𝐷𝑏2|  = √𝑅𝑒2(𝐷2) + 𝐼𝑚2(𝐷2);
 (3.14) 

– balancing masses, kg: 

 𝑚𝑏1  =
|𝐷𝑏1|

𝑟𝑏
;  𝑚𝑏2  =

|𝐷𝑏2|

𝑟𝑏
; (3.15) 

– phases of the correcting masses, °: 

 𝜑𝑏1  =
180

𝜋
𝑎𝑟𝑔(𝐷𝑏1) ;  𝜑𝑏2  =

180

𝜋
𝑎𝑟𝑔(𝐷𝑏2) ; (3.16) 

3) determination of residual imbalance: 

– complex residual imbalances, kg·m: 
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 Δ𝐷1 = 𝐷10 + 𝐷𝑏1;  Δ𝐷2 = 𝐷20 +𝐷𝑏2; (3.17) 

– magnitudes of the residual imbalances, kg·m: 

 
|Δ𝐷1|  = √𝑅𝑒2(Δ𝐷1) + 𝐼𝑚2(Δ𝐷1);

|Δ𝐷2|  = √𝑅𝑒2(Δ𝐷2) + 𝐼𝑚2(Δ𝐷2);
 (3.18) 

– phases of the residual imbalances, °: 

 Δ𝜑1  =
180

𝜋
𝑎𝑟𝑔(Δ𝐷1) ;  Δ𝜑2  =

180

𝜋
𝑎𝑟𝑔(Δ𝐷2) ; (3.19) 

4) calculation of the amplitude of forced oscillations: 

– maximum amplitude before balancing, m: 

 𝐴𝑚𝑎𝑥 =
𝑚𝑎𝑥(|𝐷10|,|𝐷20|)·𝜔𝑏

2

2𝑐𝑠−𝑚0𝜔𝑏
2 ; (3.20) 

– maximum amplitude after balancing, m: 

 Δ𝐴𝑚𝑎𝑥 =
𝑚𝑎𝑥(|Δ𝐷1|,|Δ𝐷2|)·𝜔𝑏

2

2𝑐𝑠−𝑚0𝜔𝑏
2 ; (3.21) 

5) evaluation of dynamic load on bearing supports: 

– dynamic load ratio before balancing: 

 𝑘𝑑 =
𝑚𝑎𝑥(|𝐷10|,|𝐷20|)·𝜔𝑏

2

𝑚0𝑔
; (3.22) 

– dynamic load ratio after balancing: 

 Δ𝑘𝑑 =
𝑚𝑎𝑥(|Δ𝐷1|,|Δ𝐷2|)·𝜔𝑏

2

𝑚0𝑔
; (3.23) 
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Pr. tr. 12, 13. Virtual balancing of a rotor 

 

1. Determination of eigenfrequencies and mode shapes of free 

oscillations. 

2. Forced oscillations of the rotor at the operating frequency 

before balancing. 

3. Rotor balancing by the first mode shape. 

4. Balancing at the second mode shape. 

5. Forced oscillations of the rotor at the operating frequency after 

balancing. 

6. Application of the linear regression formula. 

 

The initial data is as follows: operating speed – 

n0 = 9000 rpm; density – ρ = 7850 kg/m3; Young’s modulus – 

E = 2.1·1011 N/m2; trial imbalance – Dt = 5·10–4 kg·m. 

The following calculation technique is realized for the 

simply-supported rotor by the application of the finite element 

analysis using the computer-algebra system: 

1) determination of eigenfrequencies and mode shapes of free 

oscillations: 

– evaluation of the first two eigenfrequencies ω1 and ω2, rad/s; 

2) forced oscillations of the rotor at the operating frequency 

before balancing and choosing three correction planes: 

3) rotor balancing by the first mode shape: 

– evaluation of the complex amplitude on the 2nd correction 

plane before balancing Y02, m; 

– evaluation of the complex amplitude on the 2nd correction 

plane after balancing at the 1st mode shape Y12, m; 

– calculation of the phase shift for the 1st mode shape: 

 𝜑12 = 𝑎𝑟𝑔(𝑌20) ; (3.24) 

– calculation of the 1st mode shape factor: 
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 𝜂12 =
𝑌02

𝑌12−𝑌02
; (3.25) 

– determination of the imbalance, kg·m: 

 𝐷𝑏12 = 𝜂12𝐷𝑡𝑒
𝜋𝜑12
180

𝑗; (3.26) 

– the magnitude of the imbalance: 

 |𝐷𝑏12|  = √𝑅𝑒
2(𝐷𝑏12) + 𝐼𝑚

2(𝐷𝑏12); (3.27) 

– phase of the imbalance, °: 

 𝜑𝑏12  =
180

𝜋
𝑎𝑟𝑔(𝐷𝑏12) ; (3.28) 

4) balancing at the second mode shape: 

– evaluation of the complex amplitude on the 1st and 3rd 

correction planes before balancing Y01, and Y03, m, respectively; 

– evaluation of the complex amplitude on the 1st and 3rd 

correction planes after balancing at the 2nd mode shape Y21, and 

Y23, m, respectively; 

– calculation of the phase shift for the 2nd mode shape: 

 𝜑21 = 𝑎𝑟𝑔(𝑌01) = 𝑎𝑟𝑔(𝑌03) ; (3.29) 

– calculation of the 2nd mode shape factors: 

 𝜂21 =
𝑌01

𝑌21−𝑌01
;  𝜂23 =

𝑌03

𝑌23−𝑌03
; (3.30) 

– determination of the imbalances, kg·m: 

 𝐷𝑏21 = 𝜂21𝐷𝑡𝑒
𝜋𝜑21
180

𝑗;  𝐷𝑏23 = 𝜂23𝐷𝑡𝑒
𝜋𝜑23
180

𝑗; (3.31) 

– magnitudes of the imbalances: 
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|𝐷𝑏21|  = √𝑅𝑒2(𝐷𝑏21) + 𝐼𝑚2(𝐷𝑏21);

|𝐷𝑏23|  = √𝑅𝑒2(𝐷𝑏23) + 𝐼𝑚2(𝐷𝑏23);
 (3.32) 

– phases of the imbalances, °: 

 𝜑𝑏21  =
180

𝜋
𝑎𝑟𝑔(𝐷𝑏21) ;  𝜑𝑏23  =

180

𝜋
𝑎𝑟𝑔(𝐷𝑏23); (3.33) 

5) forced oscillations of the rotor at the operating frequency after 

balancing: 

– evaluation of the maximum displacement after balancing, m; 

6) application of the linear regression formula: 

– column-vector of displacements variations, m: 

 Δ𝑌 = {
𝑌𝑖1 − 𝑌01
𝑌𝑖2 − 𝑌02
𝑌𝑖3 − 𝑌03

}, (3.34) 

where Y01, Y02, and Y03 – complex displacements before 

balancing, m; Yi1, Yi2, and Yi3 – complex displacements at i-th 

mode shape, m; 

– calculation of the i-th mode shape factor: 

 𝜂𝑖 = (Δ𝑌
𝑇Δ𝑌)𝑇Δ𝑌𝑇𝑌0, (3.35) 

where Y0 = {Y01, Y02, Y03}
T – column-vector of displacements 

before balancing, m; 

– calculation of the phase shift for the i-th mode shape: 

 𝜑𝑖 = 𝑎𝑟𝑔(𝑌01) = 𝑎𝑟𝑔(𝑌02) = 𝑎𝑟𝑔(𝑌03) ; (3.36) 

– determination of the imbalance, kg·m: 

 𝐷𝑏𝑖 = 𝜂𝑖𝐷𝑡𝑒
𝜋𝜑𝑖
180

𝑗; (3.37) 
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– the magnitude of the imbalance: 

 |𝐷𝑏𝑖|  = √𝑅𝑒2(𝐷𝑏𝑖) + 𝐼𝑚2(𝐷𝑏𝑖); (3.38) 

– phase of the imbalance, °: 

 𝜑𝑏𝑖  =
180

𝜋
𝑎𝑟𝑔(𝐷𝑏𝑖). (3.39) 

 

Topic 4. Parameter identification of mathematical models of 

rotor dynamics 

 

Simple algebraic models. A generalized algebraic model. 

Non-algebraic models. A single experiment. A series of 

experiments. An implicit model. Linear parameter 

identification. Linear regression formula. Balancing by the 

calculation model of rotor dynamics. Practical balancing of a 

flexible rotor on the operating frequency. Application of the 

linear regression formula for balancing a flexible rotor by the 

Den Hartog’s approach. Application of the linear regression 

formula for balancing a flexible rotor by mode shapes. 

 

Pr. tr. 14, 15. Practical balancing of the flexible rotor  

at operating frequency. Balancing of flexible rotors  

by Dan Hartog’s approach 

 

1. Forced oscillations of the rotor before balancing. 

2. Determination of corrective imbalances. 

3. Forced oscillations of the rotor after balancing. 

4. Determination of amplitudes and phases of dynamic 

deflections after balancing. 
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The initial data is as follows: the 1st operating speed – 

n1 = 7500 rpm; the 2nd operating speed – n2 = 9000 rpm; 

density – ρ = 7850 kg/m3; Young’s modulus – 

E = 2.1·1011 N/m2; trial imbalance – Dt = 5·10–4 kg·m. 

The following calculation technique is realized for the 

simply-supported rotor by the application of the finite element 

analysis using the computer-algebra system: 

1) forced oscillations of the rotor before balancing: 

– choosing a number of correction planes ν; 

– evaluation of complex displacements before balancing 𝑌𝑎0
<𝜈>, 

m, where a – number of measuring plane; 

2) determination of corrective imbalances: 

– consequent setting trial imbalances, kg·m; 

– evaluation of complex displacements 𝑌𝑎,𝑖
<𝜈>, m, where i – 

number of correction plane; 

– evaluation of complex compliance coefficients, m/(kg·m): 

 𝑊𝑎,𝑖
<𝜈> =

𝑌𝑎,𝑖
<𝜈>−𝑌𝑎,0

<𝜈>

𝐷𝑡
; (4.1) 

– building matrices of complex compliance coefficients: 

 𝑊𝜈 = [𝑊𝑎,𝑖
<𝜈>]; (4.2) 

– building the total matrix of complex compliance coefficients: 

 𝑊 = [𝑊𝜈]; (4.3) 

– evaluation of the column-vector of imbalances, kg·m: 

 𝐷𝑏 = (𝑊
𝑇𝑊)−1𝑊𝑇𝑌0, (4.4) 

where Y0 = {Y01, Y02, Y03}
T – column-vector of displacements 

before balancing, m; 
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– calculation of magnitudes and phases of the imbalances by 

formulas (3.38) and (3.39); 

– application of the corrective imbalances, kg·m; 

3) forced oscillations of the rotor after balancing: 

– evaluation of complex displacements after balancing Δ𝑌𝑎
<𝜈>, 

m; 

4) determination of amplitudes and phases of dynamic 

deflections after balancing: 

– amplitudes of the complex displacements after balancing: 

 |Δ𝑌𝑎
<𝜈>|  = √𝑅𝑒2(Δ𝑌𝑎

<𝜈>) + 𝐼𝑚2(Δ𝑌𝑎
<𝜈>); (4.5) 

– phases of the complex displacements after balancing, °: 

 Δ𝜑𝑎  =
180

𝜋
𝑎𝑟𝑔(Δ𝑌𝑎

<𝜈>). (4.6) 

 

Pr. tr. 16. Nonlinear oscillations of a rotor 

 

1. Estimation of discrete masses. 

2. Harmonic analysis of a nonlinear discrete model. 

3. Dynamic stability of the rotor. 

 

The initial data is density ρ = 7850 kg/m3, and Young’s 

modulus E = 2.1·1011 N/m2. 

The following calculation technique is realized for the 

simply-supported rotor by the application of the finite element 

analysis using the computer-algebra system: 

1) estimation of discrete masses: 

– choosing a number of single masses N; 

– evaluation of the complex compliance coefficients δi,l 

(i, l = 1, 2, …, N ), m/N; 

– evaluation of the first N eigenfrequencies ων (ν = 1, 2, …, N); 
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– evaluation of the first N mode shapes 𝑈𝑖
<𝜈>; 

– evaluation of the auxiliary parameters, s2: 

 𝑧𝜈 =
1

𝜔𝜈
2 ; (4.7) 

– evaluation of the following components: 

 𝐾𝑖,𝑗
<𝜈> = 𝛿𝑖,𝑙𝑈𝑙

<𝜈>; 𝐶𝑖
<𝜈> = 𝑧𝜈𝑈𝑖

<𝜈>; (4.8) 

– forming of the following matrix and column-vector: 

 𝐾 = [𝐾<𝜈>]; 𝐶 = [𝐶<𝜈>]; (4.9) 

– evaluation of the column-vector of discrete masses: 

 𝑚 = (𝐾𝑇𝐾)−1𝐾𝑇𝐶; (4.10) 

2) harmonic analysis of a nonlinear discrete model: 

– formation of the system of nonlinear equations for rotor’s 

forced oscillations: 

 {
𝑥𝑖 = ∑ 𝛿𝑖,𝑙𝐹𝑙𝑥

𝑁
𝑙=1 ;

𝑦𝑖 = ∑ 𝛿𝑖,𝑙𝐹𝑙𝑦
𝑁
𝑙=1 ,

 (4.11) 

where Flx, Fly – components of linear and nonlinear forces, N; 

3) dynamic stability of the rotor is checked by the Routh–

Hurwitz criteria. 

 

  



41 
 

References 

 

1. Pavlenko I. Dynamic analysis of centrifugal machines rotors 

with combined using 3D and 2D finite element models /  

I. Pavlenko, V. Simonovskiy, J. Pitel, M. Demianenko. – 

Ludenscheid : RAM-Verlag, 2018. – 156 p. 

(https://cutt.ly/ucUdlvY) 

2. Karintsev I. B. Hydroaeroelasticity / I. B. Karintsev,  

I. V. Pavlenko. – Sumy : Sumy State University, 2017. – 235 p. 

(https://essuir.sumdu.edu.ua/bitstream/123456789/63399) 

3. Pavlenko I. V. Dynamic analysis of centrifugal machines 

rotors supported on ball bearings by combined application of 3D 

and beam finite element models / I. V. Pavlenko,  

V. I. Simonovskiy, M. M. Demianenko // IOP Conference 

Series: Materials Science and Engineering, 2017. – Vol. 233(1), 

012053 (https://doi.org/10.1088/1757-899X/233/1/012053) 

4. Simonovskiy V., Pavlenko I., Pitel J., Stremoukhov D., 

Ivanov V. (2021) Methods and Algorithms for Calculating 

Nonlinear Oscillations of Rotor Systems. In: Ivanov V., 

Pavlenko I., Liaposhchenko O., Machado J., Edl M. (eds) 

Advances in Design, Simulation and Manufacturing IV.  

DSMIE 2021. Lecture Notes in Mechanical Engineering. 

Springer, Cham, Vol. 2, pp. 63–74 (https://doi.org/10.1007/978-

3-030-77823-1_7) 

5. Pavlenko I., Savchenko I., Pitel J., Ivanov V., Ruban A. 

(2022) Diagnostics of the Rotor-Stator Contact by Spectral 

Analysis of the Vibration State for Rotor Machines. In: 

Tonkonogyi V., Ivanov V., Trojanowska J., Oborskyi G., 

Pavlenko I. (eds) Advanced Manufacturing Processes III. 

InterPartner 2021. Lecture Notes in Mechanical Engineering. 

Springer, Cham, pp. 521–534 (https://doi.org/10.1007/978-3-

030-91327-4_51) 

 

https://cutt.ly/ucUdlvY
https://essuir.sumdu.edu.ua/bitstream/123456789/63399
https://doi.org/10.1088/1757-899X/233/1/012053
https://doi.org/10.1007/978-3-030-77823-1_7
https://doi.org/10.1007/978-3-030-77823-1_7
https://doi.org/10.1007/978-3-030-91327-4_51
https://doi.org/10.1007/978-3-030-91327-4_51


Навчальне видання 

 

 

 

Павленко Іван Володимирович 

 

 

 

Динаміка роторних машин 

Практичні роботи 

(електронне видання) 

 

Методичні вказівки 

(Англійською мовою) 

 

 

Відповідальний за випуск А. В. Загорулько 

Комп’ютерне верстання І. В. Павленко 

 

 

 

Підписано до друку     .    .2022. Формат 60×84/16.  

Папір офсетний. 

Ум. друк. арк.:     ,     . Обл. вид. арк.:     ,    . 

Наклад:      прим. 

Вид. №     . Замовл. №       . 

 

 

Видавець і виготовлювач 

Сумський державний університет,  

вул. Римського-Корсакова, 2, м. Суми, 40007, Україна. 

Свідоцтво суб’єкта видавничої справи ДК № 3062 від 

17.12.2007. 


